

1 Introduction

BDB'D'UghjW9bWUdgi 'Uhy'8Uf']b[hcb'HfUbg]ghcfg

ULN2003A is a high voltage, high current Darlington transistor array. Each device consists of seven NPN Darlington pairs that can be output independently. These Darlington pairs have common emitter poles that support high voltage output with a common cathode clamp diode for switching inductive loads. The input and output of the clamp diode are relatively fixed to simplify the layout of the printed circuit board. The collector current of a single Darlington pair is rated at 500mA, and parallel Darlington pairs provide a higher current.

Each Darlington pair of ULN2003A devices has a $2.7k\Omega$ series base resistance that works directly with TTL or CMOS devices. This device is often used to drive a variety of loads, such as DC engine, LED display light, high power cache and general logic circuits such as TTL, 5V CMOS, etc.

& 5 j U]`UV`Y`DUW<u>U</u>[Y

PART NUMBER	PACKAGE
ULN2003A	SOP16

3 Feature

- 500mA rated collector current (single output)
- High voltage output: 50V
- Output clamp diode
- · Compatible with all kinds of logic input
- · Relay driver application

4 Applications

- Relay Drivers
- Hammer Drivers
- Lamp Drivers
- Line Drivers
- Logic Buffers
- Stepper Motors
- IP Camera
- HVAC Valve and LED Dot Matrix

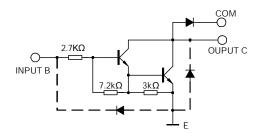


Figure 2-1. Functional Block Diagram

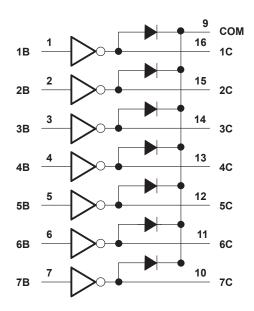


Figure 2-2. Simplified Block Diagram

5 Orderable Information

DEVICE	PACKAGE	OP TEMP	ECO PLAN	MSL	PACKING OPTION	SORT
ULN2003A	SOP16	-40 ~ 85°C	RoHS & Green	Level 3 168 HR	Tape and Reel 2500 Units / Reel	Active

Note:

ECO PLAN: For the RoHS and Green certification standards of this product, please refer to the official report provided by TN.

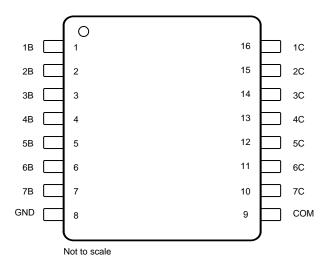
MSL: Moisture Sensitivity Level. Determined according to TN industry standard classification.

SORT: Specifically defined as follows:

Active: Recommended for new products;

Customized: Products manufactured to meet the specific needs of customers;

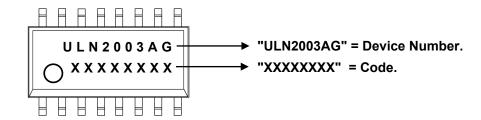
Preview: The device has been released and has not been fully mass produced. The sample may or may not be available; NoRD: It is not recommended to use the device for new design. The device is only produced for the needs of existing


customers;

Obsolete: The device has been discontinued.

6 Pin Configuration and Marking Information

6.1 Pin Configuration and Function


Figure 6-1. SOP16 Package Top View

Pin Functions

Р	PIN		PIN TYPE		DESCRIPTION		
NAME	NO.	ITPE	DESCRIPTION				
1B	1						
2B	2						
3B	3						
4B	4	I	Channel 1 through 7 Darlington base input				
5B	5						
6B	6						
7B	7						
1C	16						
2C	15						
3C	14						
4C	13	0	Channel 1 through 7 Darlington collector output				
5C	12						
6C	11						
7C	10						
GND	8	_	Common emitter shared by all channels (typically tied to ground)				
COM	9	I/O	Common cathode node for flyback diodes (required for inductive loads)				

6.2 Marking Information

7 Specifications

7.1 Absolute Maximum Ratings(1)

at 25°C free-air temperature (unless otherwise noted)

CHARACTERISTIC		SYMBOL	VALUE	UNIT
Output voltage ⁽²⁾		Vouт	50	V
Input voltage(2)		Vin	30	V
Collector current (peak)		Ic	500	mA
Base-terminal current		lΒ	25	mA
Maximum power dissipation	SOP-18	P _{D MAX}	Internally Limited ⁽³⁾	W
Maximum junction temperature		T _{J MAX}	150	°C
Storage Temperature		T _{stg}	-55 ~ 150	°C

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum rated conditions for extended periods may affect device reliability.
- (2) All voltages are with respect to network ground terminal.
- (3) Refer to *Thermal Information* for details.

7.2 Recommended Operating Conditions

PARAMETER	SYMBOL	MIN.	NOM.	MAX.	UNIT
Operating junction temperature	TJ	-	-	125	°C
Operating ambient temperature	T _A	-40	1	85	°C

7.3 Thermal Information(4)

THERMAL METRIC	SYMBOL	ULN2003A SOP16 Package	UNIT
Junction-to-ambient thermal resistance	Roja	75.2	°C/W
Reference maximum power dissipation for continuous operation	P _{D Ref}	1.33	W

(4) Test in T_A = 25°C, see *Notes* for more details.

7 Specifications

7.4 Electrical Characteristics

at 25°C free-air temperature (unless otherwise specified)

	参数			测试条件	最小	典型	最大	单位
				I _C =200mA			2.4	
V _{I(ON)}	导通状态输入电压	图 14	V _{CE} =2V	I _C =250mA			2.7	V
				I _C =300mA			3	
VOH	 开关后输出高电平	图 17	VS=50V,	50V 版本	VS-50			mV
VOH	八大石棚山同屯	图 17	I ₀ =300mA	40V 版本	VS-40			IIIV
			I _I =250μA,	I _C =100mA		0.9	1.1	
$V_{CE(SAT)}$	集电极-发射极饱和压降	图 13	I _I =350μA, I _C =200mA			1.0	1.3	V
			I _I =500μA, I _C =350mA			1.4	1.6	
I _{CEX}	集电极关断漏电流	图 10	V _{CE} =50V, I	=0			50	μΑ
V_{F}	钳位二极管正向压降	图 16	I _F =350mA			1.7	2	V
I _I (off)	关断输入电流	图 11	$V_{CE}=50V$, $I_{C}=$	=500μΑ	50	65		uA
I_{l}	输入电流	图 12	V _I =3.85V			0.93	1.35	mA
h _{FE}	直流正向电流增益	图 13	$V_{CE}=2V$, $I_{C}=3$	350mA	1000			
I _R	钳位二极管反向电流	图 15	V _R =50V				50	μΑ
Cı	输入电容		V _I =0,f=1MHz			15	25	pF
t _{PLH}	传输延迟 低-高	图 17				0.25	1	μs
t _{PHL}	传输延迟 高-低	图 17				0.25	1	μs

T_A =-40 $^{\circ}$ C $^{\sim}$ +105 $^{\circ}$ C

	参数	测试图		测试条件	最小	典型	最大	单位
				I _C =200mA			2.7	
V _{I(ON)}	导通状态输入电压	图 14	V _{CE} =2V	I _C =250mA			2.9	V
				I _C =300mA			3	
VOL	工光丘松山古山亚	图 17	VS=50V,	50V 版本	VS-50			/
VOH	开关后输出高电平 	图 17	I _O =300mA	40V 版本	VS-40			mV
		图 13	I _I =250μA, I _C =100mA			0.9	1.2	
V _{CE(SAT)}	集电极-发射极饱和压降		I _I =350μA, I _C =200mA			1	1.4	V
			I _I =500μΑ,	I _C =350mA		1.2	1.7	
I _{CEX}	集电极关断漏电流	图 10	V _{CE} =50V, I	_i =0			100	μΑ
V _F	钳位二极管正向压降	图 16	I _F =350mA			1.7	2.2	V
I _I (off)	关断输入电流	图 11	V _{CE} =50V,I _C =	=500μΑ	30	65		uA
I_1	输入电流	图 12	V _I =3.85V			0.93	1.35	mA
I _R	钳位二极管反向电流	图 15	V _R =50V				100	μΑ
Cı	输入电容		V _I =0, f=1MI			15	25	pF
t _{PLH}	传输延迟 低-高	图 17				1	10	μs
t _{PHL}	传输延迟 高-低	图 17				1	10	μs

7.5 Typical Characteristics

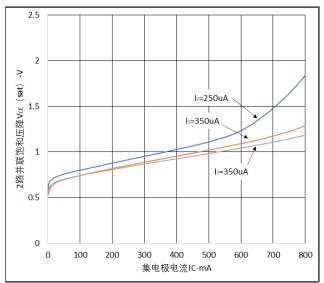


图 4、2 路并联饱和压降 VS 集电极电流

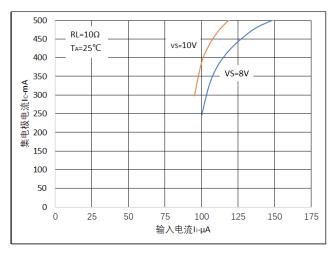


图 5、集电极电流 VS 输入电流

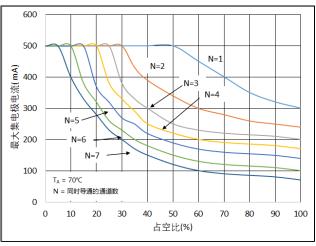


图 6、最大集电极电流 VS 占空比

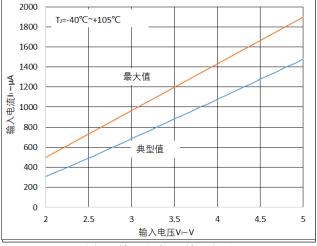


图 7、输入电流 VS 输入电压

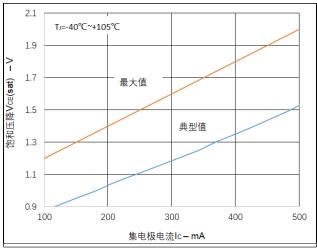


图 8、饱和压降 VS 集电极电流

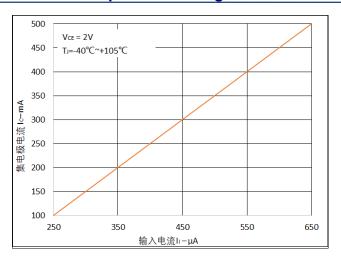


图 9、集电极电流 VS 输入电流

8 Parameter Measurement Information

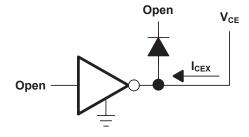


Figure 1a. I_{CEX} Test Circuit

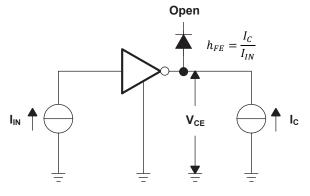


Figure 2. h_{FE} , $V_{CE\,(SAT)}$ Test Circuit

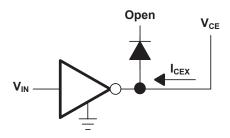


Figure 1b. I_{CEX} Test Circuit

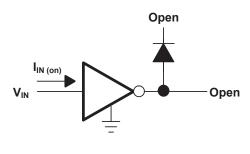
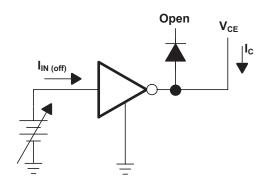



Figure 3. I_{IN} Test Circuit

 I_{IN} is fixed when used to measure V_{CE} and variable when used to measure h_{FE}

V_{IN (on)} V_{CE}

Figure 5. $V_{\text{IN (on)}}$ Test Circuit

Open

Figure 4. $I_{IN (off)}$ Test Circuit

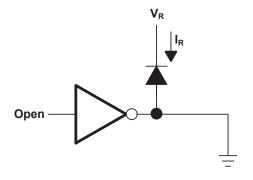


Figure 6. I_R Test Circuit

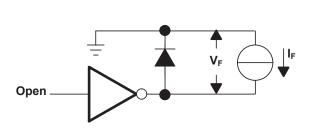
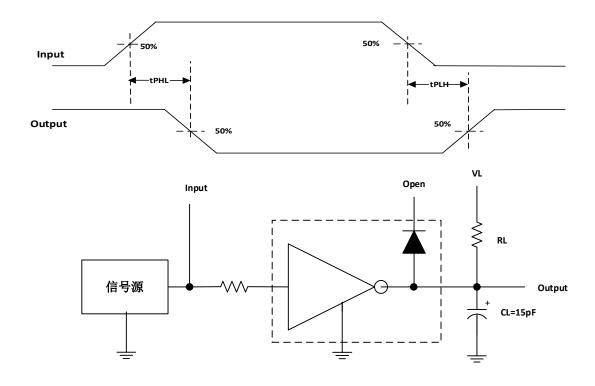
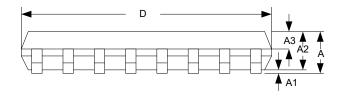
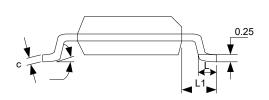
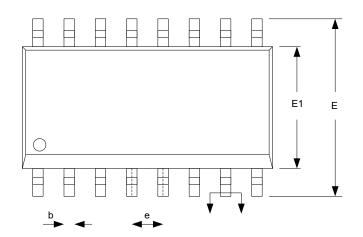
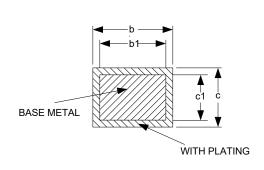


Figure 7. V_F Test Circuit

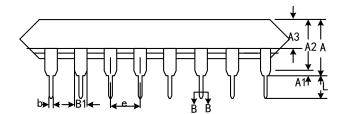



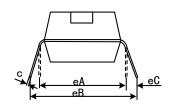

图 17、传输延时波形图

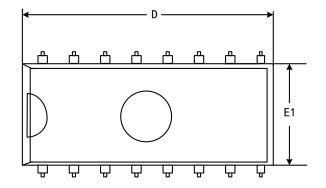

备注:图 17 中电容负载为示波器探头寄生电容

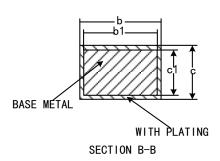

9 Mechanical Information

SOP16 Package








CVMPOL		MILLMETER			
SYMBOL	MIN	NOM	MAX		
Α	-	-	1.77		
A1	0.08	0.18	0.28		
A2	1.20	1.40	1.60		
A3	0.55	0.65	0.75		
b	0.39	-	0.48		
b1	0.38	0.41	0.43		
С	0.21	-	0.26		
c1	0.19	0.20	0.21		
D	9.70	9.90	10.10		
E	5.80	6.00	6.20		
E1	3.70	3.90	4.10		
е		1.27BSC			
L	0.5	0.65	0.80		
L1	1.05BSC				
θ	0°	-	8°		

DIP16:

CVAADOL		MILLIMETER				
SYMBOL	MIN	NOM	MAX			
Α	3.60	3.80	4.00			
A1	0.51	_	_			
A2	3.10	3.30	3.50			
A3	1.42	1.52	1.62			
b	0.44	_	0.53			
b1	0.43	0.46	0.48			
B1		1.52BSC				
С	0.25	_	0.31			
c1	0.24	0.25	0.26			
D	18.90	19.10	19.30			
E1	6.15	6.35	6.55			
е		2.54BSC				
eA		7.62BSC				
еВ	7.62	_	9.50			
eC	0	_	0.94			
L	3.00	_	_			

Contact Information

TANI website: http://www.tanisemi.com Email:tani@tanisemi.com

For additional information, please contact your local Sales Representative.

® is registered trademarks of TANI Corporation.

Product Specification Statement

The product specification aims to provide users with a reference regarding various product parameters, performance, and usage. It presents certain aspects of the product's performance in graphical form and is intended solely for users to select product and make product comparisons, enabling users to better understand and evaluate the characteristics and advantages of the product. It does not constitute any commitment, warranty, or guarantee.

The product parameters described in the product specification are numerical values, characteristics, and functions obtained through actual testing or theoretical calculations of the product in an independent or ideal state. Due to the complexity of product applications and variations in test conditions and equipment, there may be slight fluctuations in parameter test values. TANI shall not guarantee that the actual performance of the product when installed in the customer's system or equipment will be entirely consistent with the product specification, especially concerning dynamic parameters. It is recommended that users consult with professionals for product selection and system design. Users should also thoroughly validate and assess whether the actual parameters and performance when installed in their respective systems or equipment meet their requirements or expectations. Additionally, users should exercise caution in verifying product compatibility issues, and TANI assumes no responsibility for the application of the product. TANI strives to provide accurate and up-to-date information to the best of our ability. However, due to technical, human, or other reasons, TANI cannot guarantee that the information provided in the product specification is entirely accurate and error-free. TANI shall not be held responsible for any losses or damages resulting from the use or reliance on any information in these product specifications.

TANI reserves the right to revise or update the product specification and the products at any time without prior notice, and the user's continued use of the product specification is considered an acceptance of these revisions and updates. Prior to purchasing and using the product, users should verify the above information with TANI to ensure that the product specification is the most current, effective, and complete. If users are particularly concerned about product parameters, please consult TANI in detail or request relevant product test reports. Any data not explicitly mentioned in the product specification shall be subject to separate agreement.

Users are advised to pay attention to the parameter limit values specified in the product specification and maintain a certain margin in design or application to ensure that the product does not exceed the parameter limit values defined in the product specification. This precaution should be taken to avoid exceeding one or more of the limit values, which may result in permanent irreversible damage to the product, ultimately affecting the quality and reliability of the system or equipment.

The design of the product is intended to meet civilian needs and is not guaranteed for use in harsh environments or precision equipment. It is not recommended for use in systems or equipment such as medical devices, aircraft, nuclear power, and similar systems, where failures in these systems or equipment could reasonably be expected to result in personal injury. TANI shall assume no responsibility for any consequences resulting from such usage.

Users should also comply with relevant laws, regulations, policies, and standards when using the product specification. Users are responsible for the risks and liabilities arising from the use of the product specification and must ensure that it is not used for illegal purposes. Additionally, users should respect the intellectual property rights related to the product specification and refrain from infringing upon any third- party legal rights. TANI shall assume no responsibility for any disputes or controv ersies arising from the above-mentioned issues in any form.