SOT-89

Product Summary

P-Channel Enhancement Mode Power MOSFET

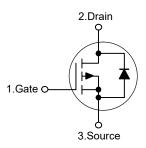
- V_{DS} = -30V, I_{D} = -5A
- $R_{DS(on)} < 53 \text{m}\Omega @V_{GS} = -10V$

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Green Device Available

Application

- **Power Switching Application**
- Uninterruptible Power Supply


(Top View)

Pin	Description	
1	Gate	
2	Drain	
3	Source	

Marking Code

Schematic Diagram

Absolute Maximum Ratings

(Ta=25°C unless otherwise specified)

Symbol	Parameter	Rating	Units
X _{öù} Á	Ölæni EÙ[` l&^ÁK[æe* ^Á	Ë l €	XÁ
X _{õù} Á	Őæe^ÉÙ[ˇ¦&^Áx([cæ≛^Á	łŒ	XÁ
QaO VôMGͰCÁ	Ô[}α], ઁ[ˇ•ÁÖ¦æa], ÁÔˇ¦¦^}αÊÄŠ _{ÕÙ} ÁO ÁÈT€X ^F Á	ÉE	ŒÁ
@O VôMF €€ ℃Á	Ô[}α], ઁ[ˇ•ÁÖ¦æa], ÁÔȦ¦^}αĒĀŠ _{ÕÙ} ÁO ÁĒF€X ^F Á	ËÈ	ŒÁ
Q _⊤ Á	Ú ∣• ^å /Ö ¦æ ∄ /Ô ˚ ¦¦^} c ^C Á	ËŒ	ŒÁ
ÒŒŨÁ	Ùāj* ^ÁÚ~ •^ÁŒçæþæj&@ÁÖ}^¦*^ ^H Á	FÌ Á	{ RÁ
Q _{tÙ} Á	ΟΕραφα) &@ ÁÔ~ ;;^} σÁ	ìÁ	ŒÁ
ÚöO VôM G ͰCÁ	V[cæ ÁÚ[¸^¦ÁÖã•đ]æāā[}¹Á	FÈÁ	ΥÁÁ
V _{ÙVÕ} Á	Ù([¦æ*^Á/^{]^¦æc*¦^ÁÜæ}*^Á	ĽÍÍÁ{ÁFÍ€	℃Á
V _R Á	U]^¦ænāj*Ánt?}&nā[}Áv^{]^¦ænc*¦^Áuæ)*^Á	ËÍÁ{ÁFÍ€	°CÁ

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction-Ambient ¹		62.5	°C/W
R _{eJC}	Thermal Resistance Junction-Case ¹		30	°C/W

Electrical Characteristics

(Ta=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25°C , I _D =-1mA		-		V/°C
В	Static Drain-Source On-Resistance ²	V _{GS} =-10V , I _D =-5.0A		53	65	0
R _{DS(ON)}		V _{GS} =-4.5V , I _D =-3.8A		80	98	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	\\ _\\	-1.0	-1.5	-2.0	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=-250uA$		4.		mV/℃
	Drain Course Lookens Current	V _{DS} =-24V , V _{GS} =0V , T _J =25℃		-	-1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =55℃		-	-5	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V		-	±100	nA
gfs	orward Transconductance	V_{DS} =-5V , I_{D} =-3A		5		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		24	48	Ω
Qg	Total Gate Charge (-4.5V)			11.6		
Q_{gs}	Gate-Source Charge	V _{DS} =-15V , V _{GS} =-4.5V , I _D =-5A		1.3		nC
Q_{gd}	Gate-Drain Charge			2.5		
$T_{d(on)}$	Turn-On Delay Time			6	12	
Tr	Rise Time	V_{DD} =-15V, V_{GEN} =-10V, R_{G} =3.3 Ω		12	23	
$T_{d(off)}$	Turn-Off Delay Time	I _D =-1A ,R _L =15Ω		25	46	ns
T _f	Fall Time			6	12	
C _{iss}	Input Capacitance			625		
C _{oss}	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		100		pF
C _{rss}	Reverse Transfer Capacitance			60		

Guaranteed Avalanche Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy ⁵	V _{DD} =25V , L=0.1mH , I _{AS} =6A	6			mJ

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous Source Current ^{1,6}	V _G =V _D =0V , Force Current			-2.0	Α
I _{SM}	Pulsed Source Current ^{2,6}	VG-VD-OV, POICE Current		-	-20	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1.7A , T _J =25℃		-	-1	V

Note

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper,t<10sec.
- 2.The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =-25V, V_{GS} =-10V,L=0.1mH,I_{AS}=-6A
- 4.The power dissipation is limited by 150 ℃ junction temperature
- 5. The Min. value is 100% EAS tested guarantee.
- 6. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristic Curves

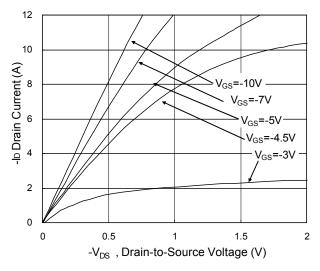
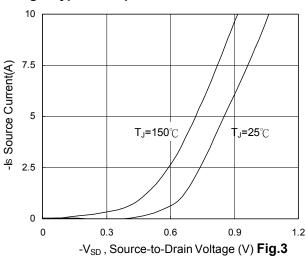



Fig.1 Typical Output Characteristics

Forward Characteristics of Reverse

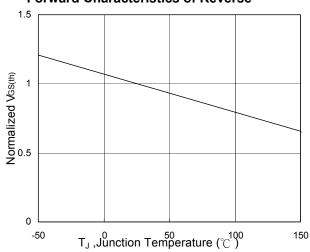


Fig.5 Normalized V_{GS(th)} vs. T_J

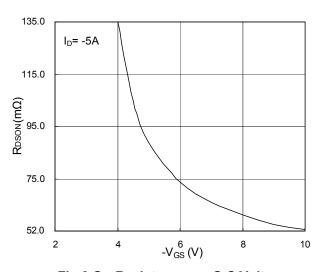


Fig.2 On-Resistance vs. G-S Voltage

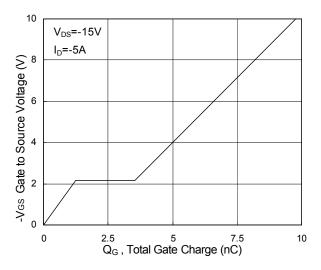


Fig.4 Gate-Charge Characteristics

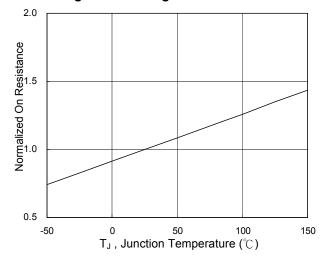
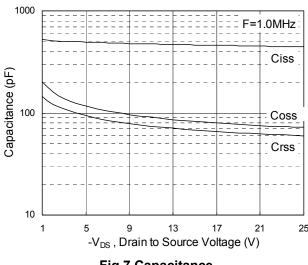



Fig.6 Normalized R_{DSON} vs. T_{J}

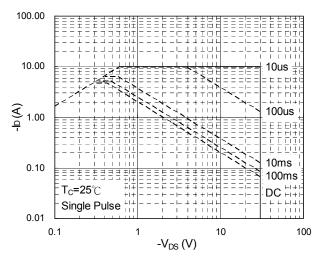


Fig.7 Capacitance

Fig.8 Safe Operating Area

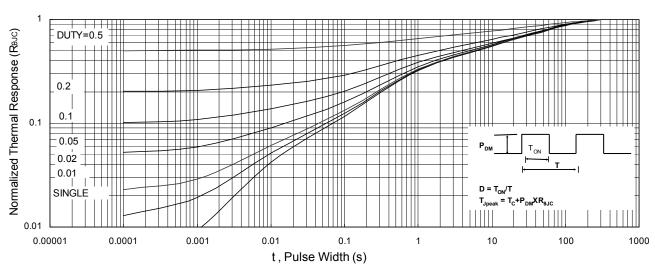


Fig.9 Normalized Maximum Transient Thermal Impedance

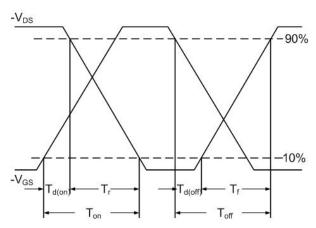


Fig.10 Switching Time Waveform

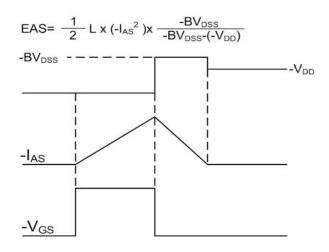
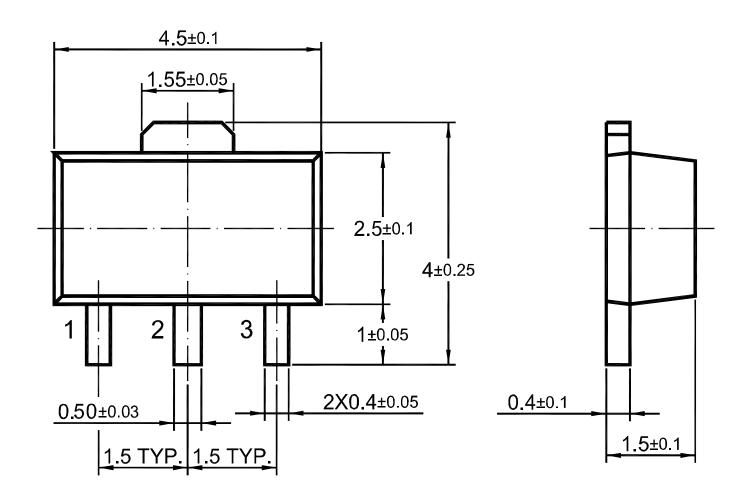
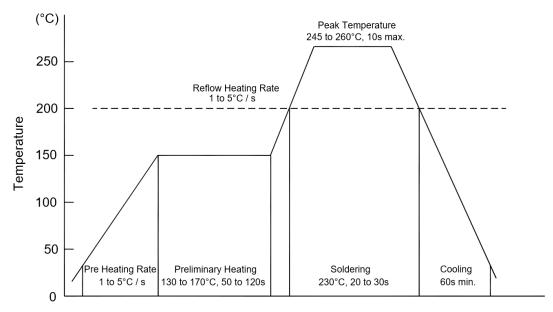



Fig.11 Unclamped Inductive Waveform

Package Outline

SOT-89

Dimensions in mm



Ordering Information

Device	Package	Shipping
TN05P30JSQ	00 TO2	1,000PCS/Reel&7inches
TNUSP30JSQ	SOT-89	3,000PCS/Reel&13inches

Conditions of Soldering and Storage

Recommended condition of reflow soldering

Recommended peak temperature is over 245 °C. If peak temperature is below 245 °C, you may adjust the following parameters:

- Time length of peak temperature (longer)
- Time length of soldering (longer)
- Thickness of solder paste (thicker)

Conditions of hand soldering

• Temperature: 370 °C

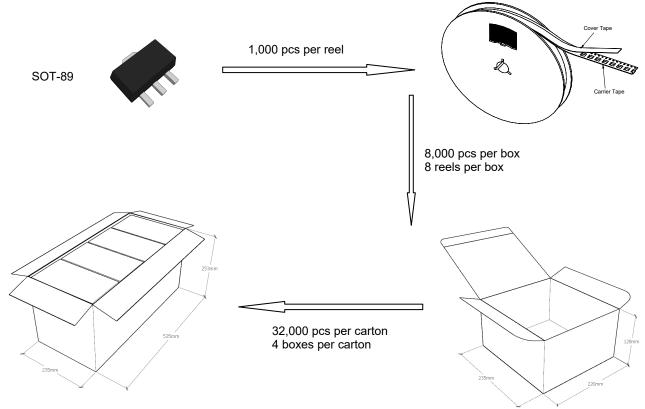
Time: 3s max.Times: one time

Storage conditions

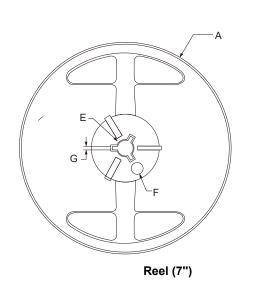
Temperature

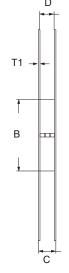
5 to 40 °C

Humidity

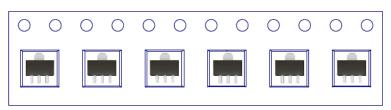

30 to 80% RH

Recommended period

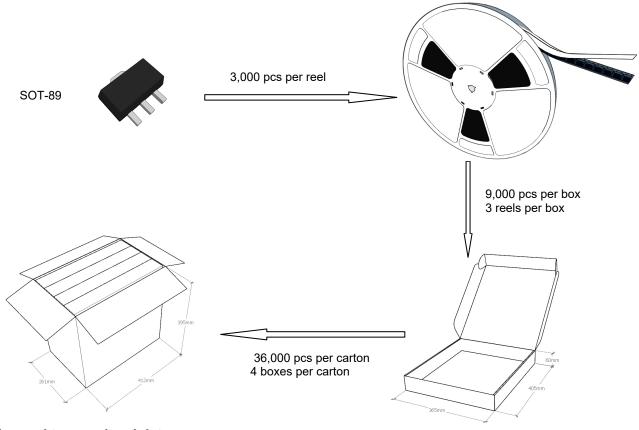

One year after manufacturing


Package Specifications

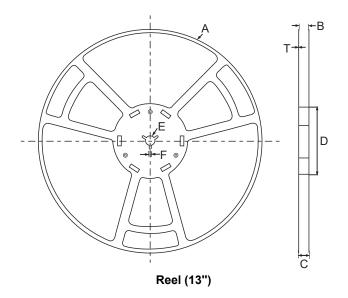
• The method of packaging (1,000PCS/Reel&7inches)



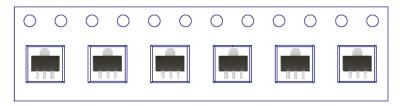
◆ Embossed tape and reel data



symbol	Value(unit:mm)
Α	Ф179±1
В	60.5±0.2
С	15.3±0.3
D	12.5~13.7
Е	Ф13.5±0.2
F	Ф10.0±0.2
G	2.7±0.2
T1	1.0±0.2



Package Specifications


• The method of packaging (3,000PCS/Reel&13inches)

◆ Embossed tape and reel data

symbol	Value(unit:mm)
Α	Ф330±1
В	12.7±0.5
С	16.5±0.3
D	Ф99.5±0.5
E	Ф13.6±0.3
F	2.8±0.3
T1	1.9±0.2

Contact Information

TANI website: http://www.tanisemi.com Email:tani@tanisemi.com

For additional information, please contact your local Sales Representative.

® is registered trademarks of TANI Corporation.

Product Specification Statement

The product specification aims to provide users with a reference regarding various product parameters, performance, and usage. It presents certain aspects of the product's performance in graphical form and is intended solely for users to select product and make product comparisons, enabling users to better understand and evaluate the characteristics and advantages of the product. It does not constitute any commitment, warranty, or guarantee.

The product parameters described in the product specification are numerical values, characteristics, and functions obtained through actual testing or theoretical calculations of the product in an independent or ideal state. Due to the complexity of product applications and variations in test conditions and equipment, there may be slight fluctuations in parameter test values. TANI shall not guarantee that the actual performance of the product when installed in the customer's system or equipment will be entirely consistent with the product specification, especially concerning dynamic parameters. It is recommended that users consult with professionals for product selection and system design. Users should also thoroughly validate and assess whether the actual parameters and performance when installed in their respective systems or equipment meet their requirements or expectations. Additionally, users should exercise caution in verifying product compatibility issues, and TANI assumes no responsibility for the application of the product. TANI strives to provide accurate and up-to-date information to the best of our ability. However, due to technical, human, or other reasons, TANI cannot guarantee that the information provided in the product specification is entirely accurate and error-free. TANI shall not be held responsible for any losses or damages resulting from the use or reliance on any information in these product specifications.

TANI reserves the right to revise or update the product specification and the products at any time without prior notice, and the user's continued use of the product specification is considered an acceptance of these revisions and updates. Prior to purchasing and using the product, users should verify the above information with TANI to ensure that the product specification is the most current, effective, and complete. If users are particularly concerned about product parameters, please consult TANI in detail or request relevant product test reports. Any data not explicitly mentioned in the product specification shall be subject to separate agreement.

Users are advised to pay attention to the parameter limit values specified in the product specification and maintain a certain margin in design or application to ensure that the product does not exceed the parameter limit values defined in the product specification. This precaution should be taken to avoid exceeding one or more of the limit values, which may result in permanent irreversible damage to the product, ultimately affecting the quality and reliability of the system or equipment.

The design of the product is intended to meet civilian needs and is not guaranteed for use in harsh environments or precision equipment. It is not recommended for use in systems or equipment such as medical devices, aircraft, nuclear power, and similar systems, where failures in these systems or equipment could reasonably be expected to result in personal injury. TANI shall assume no responsibility for any consequences resulting from such usage.

Users should also comply with relevant laws, regulations, policies, and standards when using the product specification. Users are responsible for the risks and liabilities arising from the use of the product specification and must ensure that it is not used for illegal purposes. Additionally, users should respect the intellectual property rights related to the product specification and refrain from infringing upon any third- party legal rights. TANI shall assume no responsibility for any disputes or controv ersies arising from the above-mentioned issues in any form.