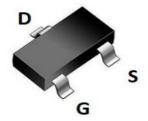


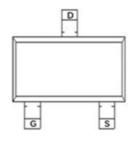
TN03N40SA

N-Channel Enhancement Mode Power MOSFET

Features

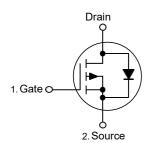

- $\bullet \;\;$ Excellent $R_{DS(ON)}$ and Low Gate Charge
- Halogen-free; RoHS-compliant
- · Pb-free plating

Applications


- Load Switch
- PWM Application
- Power Management

Product Summary

Parameters	Value	Unit
V_{DSS}	40	V
$V_{GS(th)_Typ}$	2.0	V
I _D (@V _{GS} =10V)	4	Α
$R_{DS(ON)_Typ}(@V_{GS}=10V$	30	mΩ
$R_{DS(ON)_Typ}(@V_{GS}=4.5V$	40	mΩ



SOT-23 Top View

Pin Assignment

Schematic Diagram

Ordering Information

Device	Marking	MSL	Form	Package	Reel(pcs)	Per Carton (pcs)
TN03N40SA	03N40	3	Tape&Reel	SOT-23	3000	120000

Absolute Maximum Ratings (@ T_A = 25°C unless otherwise specified)

			,	
Symbol	Parameter		Value	Unit
V _{DS}	Drain-to-Source Voltage)	40	V
V_{GS}	Gate-to-Source Voltage	,	±20	V
,	Continuous Proin Current	T _A = 25°C	3.9	۸
ID	Continuous Drain Current	$T_A = 100^{\circ}C$	2.4	— A
I _{DM}	Pulsed Drain Current (1)	•	Refer to Fig.4	А
В	Dower Dissinction	T _A = 25°C	1.1	10/
P _D	Power Dissipation	$T_A = 100^{\circ}C$	0.4	w
T _J , T _{STG}	Junction & Storage Temperatur	e Range	-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Max	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient ⁽²⁾	166	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient ⁽³⁾	114	C/VV

Electrical Characteristics (T_J = 25°C unless otherwise specified)

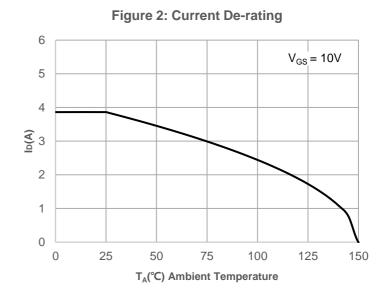
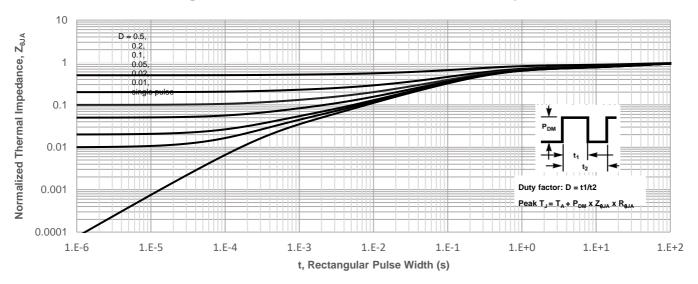
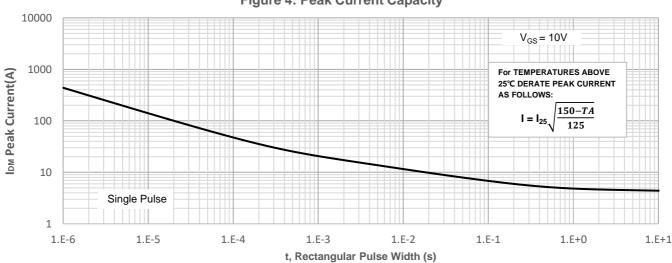
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Cha	aracteristics			ļ		!
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	40	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 0V, V_{GS} = 40V$	-	-	1.0	μА
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 12V$	-	-	±100	nA
On Cha	racteristics					!
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.4	2.0	2.6	V
D	Static Drain-Source ON-Resistance ⁽⁴⁾	$V_{GS} = 10V, I_{D} = 4A$	-	30	39	mΩ
$R_{DS(ON)}$	Static Drain-Source ON-Resistance	$V_{GS} = 4.5V, I_D = 3A$	-	40	52	mΩ
Dynami	ic Characteristics					
R_{g}	Gate Resistance	f = 1MHz	-	2.3	-	Ω
C_{iss}	Input Capacitance	\/	383	536	723	pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 20V,$ $f = 1MHz$	30	42	57	pF
C _{rss}	Reverse Transfer Capacitance	1 - 11/11/2	24	33	45	pF
Qg	Total Gate Charge	V 0. 45V	-	11	-	nC
Q_{gs}	Gate Source Charge	$V_{GS} = 0 \text{ to } 4.5V$ $V_{DS} = 20V, I_D = 3A$	-	2.2	-	nC
Q_gd	Gate Drain("Miller") Charge	V _{DS} = 20 V, I _D = 0/1	-	2	-	nC
Switchi	ing Characteristics					
t _{d(on)}	Turn-On DelayTime		-	4.6	-	ns
t _r	Turn-On Rise Time	$V_{GS} = 10V, V_{DD} = 20V$	-	2	-	ns
t _{d(off)}	Turn-Off DelayTime	$I_D = 3A, R_{GEN} = 3\Omega$	-	45	-	ns
t _f	Turn-Off Fall Time	1	-	355	-	ns
Body D	iode Characteristics					!
Is	Maximum Continuous Body Diode Forward	d Current	-	-	4	А
I _{SM}	Maximum Pulsed Body Diode Forward Cur	rent	-	-	15	А
V _{SD}	Body Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 30A$	-		1.2	V
trr	Body Diode Reverse Recovery Time	1 20 4:/4+ 4004/:	-	8.5	-	ns
Qrr	Body Diode Reverse Recovery Charge	$I_F = 3A$, di/dt = 100A/us	-	3.8	-	nC

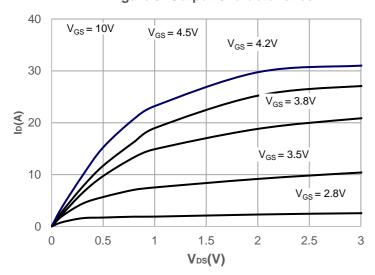
Notes:

- 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.
- 2. $R_{\theta JA}$ is measured with the device mounted on a minimum recommended pad of 2oz copper FR4 PCB.
- 3. $R_{\theta JA}$ is measured with the device mounted on a 1inch $^{\!2}$ pad of 2oz copper FR4 PCB.
- 4. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%.

Typical Performance Characteristics

Figure 1: Power De-rating 1.2 P_D(W) Multiplier 9.0 9.0 9.0 0.2 0 0 25 75 100 125 150 T_A (°C) Ambient Temperature


Figure 3: Normalized Maximum Transient Thermal Impedance

Typical Performance Characteristics

Figure 5: Output Characteristics

Figure 6: Typical Transfer Characteristics

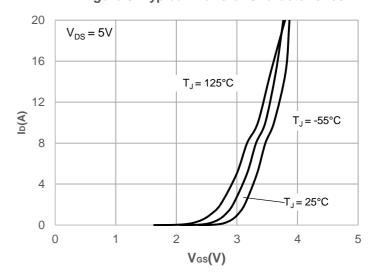
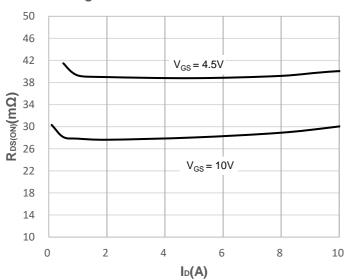
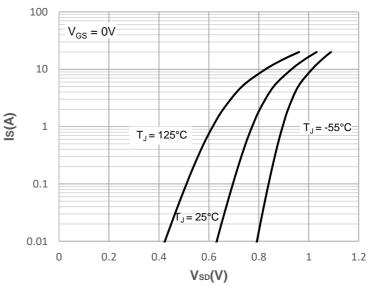




Figure 7: On-resistance vs. Drain Current

Figure 8: Body Diode Characteristics

Figure 9: Gate Charge Characteristics

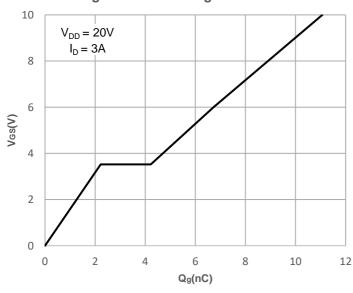
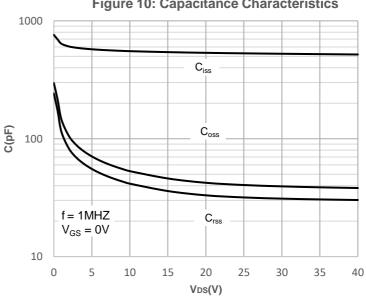



Figure 10: Capacitance Characteristics

Typical Performance Characteristics

Figure 11: Normalized Breakdown voltage vs. Junction Temperature

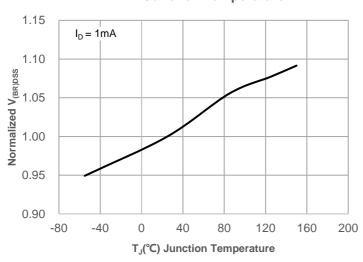


Figure 13: Normalized Threshold Voltage vs. Junction Temperature

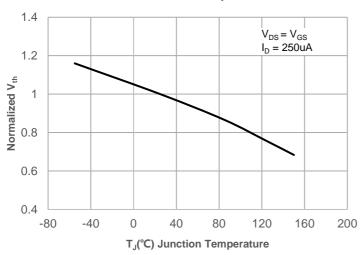


Figure 15: Maximum Safe Operating Area

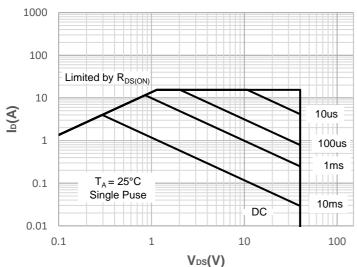


Figure 12: Normalized on Resistance vs. Junction Temperature

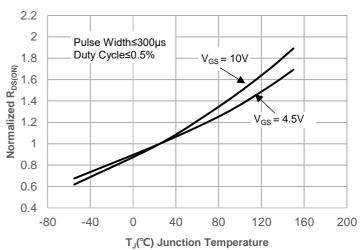
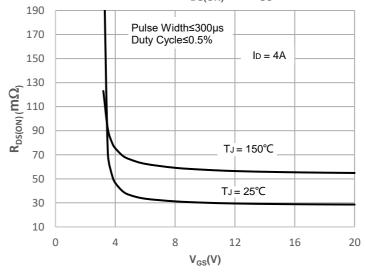



Figure 14: R_{DS(ON)} vs. V_{GS}

Test Circuit

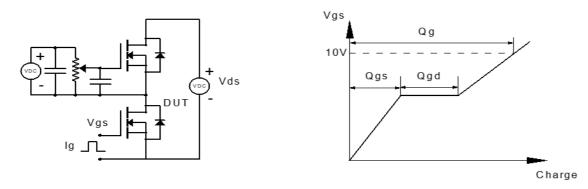


Figure 1: Gate Charge Test Circuit & Waveform

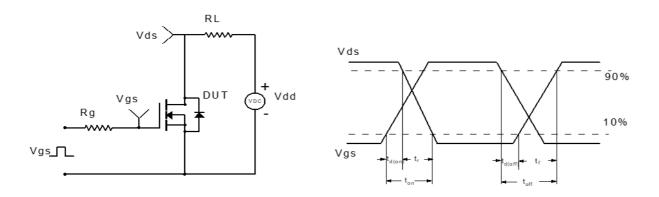


Figure 2: Resistive Switching Test Circuit & Waveform

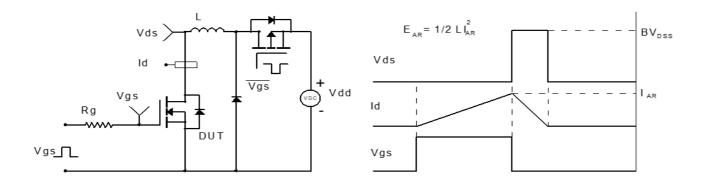


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform

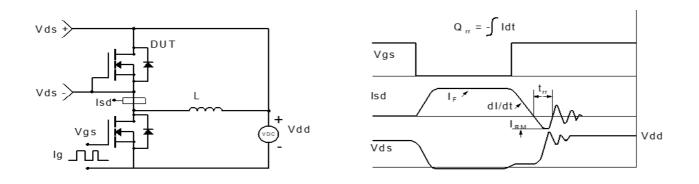
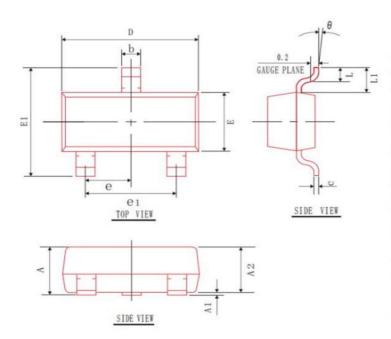
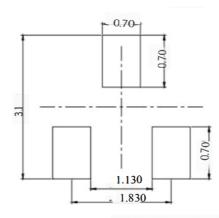



Figure 4: Diode Recovery Test Circuit & Waveform


Package Mechanical Data(SOT-23)

COMMON DIMENSIONS (UNITS OF MEASURE=mm)

SYMBOL	MIN	NOM	MAX
A	0.90	1.05	1.20
A1	0.00	0.05	0.10
A2	0.90	1.00	1.10
b	0.30	0.40	0.50
С	0.08	0. 10	0.15
D	2.80	2.90	3.00
E	1. 20	1.30	1.40
E1	2. 30	2.40	2.50
L	0.30	0.40	0. 50
θ	0°	5°	10°
L1	0. 55 REF		
e	0. 95 BSC		
e i	1.90 REF		

Recommended Footprint

DIMENSIONS:MILLIMETERS

Contact Information

TANI website: http://www.tanisemi.com Email:tani@tanisemi.com

For additional information, please contact your local Sales Representative.

® is registered trademarks of TANI Corporation.

Product Specification Statement