

MOC3063S-TA1

Photo Transistor Coupler

FEATURES

- * Isolation voltage between input and output V_{iso} : 5,000 V_{rms}
- * 6pin DIP zero-cross optoisolators triac driver output
- * High repetitive peak off-state voltage V_{DRM} : Min. 600V
- * High critical rate of rise of off-state voltage

 $(dv/dt : MIN. 1000V / \mu s)$

* Dual-in-line package:

MOC3063

* Wide lead spacing package:

MOC3063M

* Surface mounting package:

MOC3063S

* Tape and reel packaging:

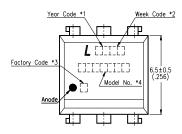
MOC3063S-TA1

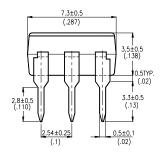
* Safety approval

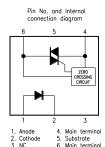
UL / CSA / FIMKO / VDE* approved

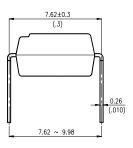
*Required "V" ordering option

* RoHS compliance

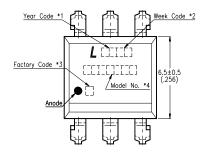

APPLICATION

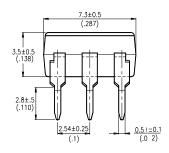

SAC Motor Drives

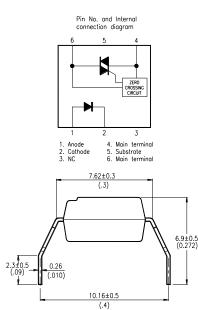

- * AC Motor Starters
- * E.M. Contactors
- * Lighting Controls
- * Solenoid/Valve Controls
- * Solid State Relays
- * Static Power Switches
- * Temperature Controls


OUTLINE DIMENSIONS

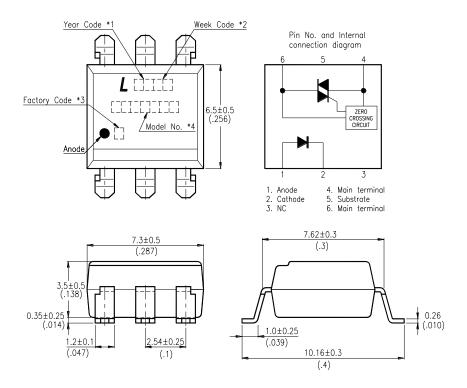
Dual-in-line package:







Wide lead spacing package:


- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark shall be marked.

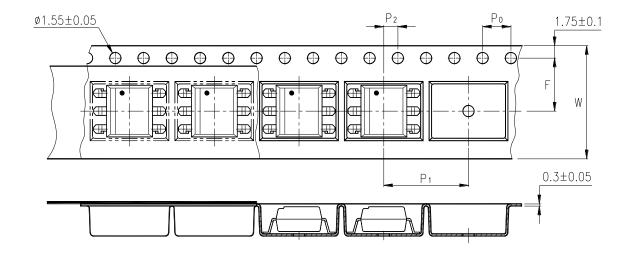
(Z: Taiwan, Y: Thailand, X: China-TJ, W: China-CZ)

*4. Model No.: MOC3063

OUTLINE DIMENSIONS

Surface mounting package:

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark shall be marked.


(Z: Taiwan, Y: Thailand, X: China-TJ, W: China-CZ)

*4. Model No.: MOC3063

TAPING DIMENSIONS

Tape and reel package:

MOC3063S-TA1

Description	Symbol	Dimensions in mm (inches)
Tape wide	W	16 ± 0.3 (.63)
Pitch of sprocket holes	P ₀	4 ± 0.1 (.15)
Distance of compartment	F	$7.5 \pm 0.1 \; (.295)$
Distance of compartment	P ₂	2 ± 0.1 (.079)
Distance of compartment to compartment	P ₁	12 ± 0.1 (.472)

ABSOLUTE MAXIMUM RATING

 $(Ta = 25^{\circ}C)$

	PARAMETER	SYMBOL	RATING	UNIT
	Forward Current	IF	50	mA
INPUT	Reverse Voltage	V_R	6	V
	Power Dissipation	P _D	120	mW
	Off-State Output Terminal Voltage	V _{DRM}	600	V
OUTPUT	Peak Repetitive Surge Current (PW=100μs, 120pps)	Ітѕм	1	A
	Collector Power Dissipation	Pc	150	mW
Total P	ower Dissipation	P _{tot}	250	mW
*1 Isolatio	n Voltage	Viso	5,000	Vrms
Ambient Operating Temperature Range		T _A	-40 ~ +100	°C
Storage Temperature Range		$T_{ m stg}$	T_{stg} $-55 \sim +150$	
*2 Soldering Temperature		T_{L}	260	°C

*1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector, emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.

*2. For 10 Seconds

ELECTRICAL - OPTICAL CHARACTERISTICS

 $(Ta = 25^{\circ}C)$

PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
INPUT	Forward Voltage		V _F		1.2	1.4	V	I _F =20mA
	Reverse Current		Ir	_	0.05	10	μΑ	V _R =6V
OUTPUT	*1 Peak Blocking Current, Eit Direction	her	I_{DRM1}		_	500	nA	$V_{DRM} = 600V$
	Peak On-State Voltage, Either Direction		V_{TM}		—	3.0	V	I _{TM} =100 mA Peak
	*2 Critical rate of Rise of Off- Voltage	State	dv/dt	1000			V/µs	
COUPLED	*3 Led Trigger Current, Current Required to Latch Output, Either Direction	C3063	I_{FT}	_	_	5	mA	Main Terminal Voltage = 3V
	Holding Current, Either Direction		I_{H}		400		μΑ	
ZERO CROSSING	Inhibit Voltage		V_{INH}	_	5	20	Volts	I _F =Rated I _{FT} , MT1-MT2 Voltage above which device will not trigger.
	Leakage in Inhibited State		I_{DRM2}			500	μΑ	$I_F = Rated \ I_{FT}, \ Rated$ $V_{DRM}, \ Off \ State$

^{*1} Test voltage must be applied within dv/dt rating.

^{*2} This is static dv/dt. Commutating dv/dt is a function of the load-driving thyristor(s) only.

^{*3} All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT} . Therefore, recommended operating I_F lies between max I_{FT} 5mA for MOC3063 and absolute max I_F (50mA)

CHARACTERISTICS CURVES

Fig.1 Forward Current vs.

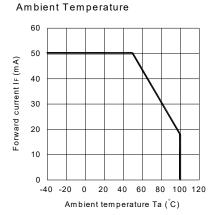


Fig.3 Minimum Trigger Current vs. Ambient Temperature

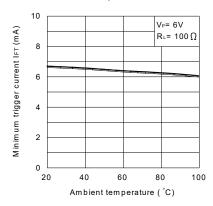


Fig.5 On-state Voltage vs. Ambient Temperature

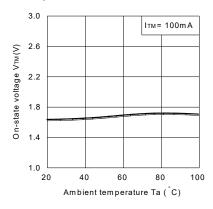


Fig.2 On-state Current vs. Ambient Temperature

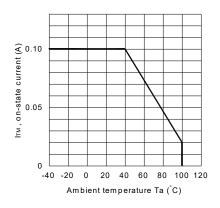


Fig.4 Forward Current vs. Forward Voltage

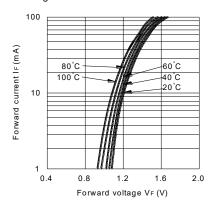
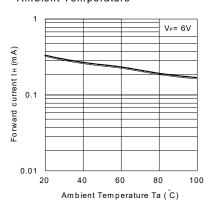



Fig.6 Holding Current vs.

Ambient Temperature

CHARACTERISTICS CURVES

40

Ambient temperature Ta (°C)

20

Fig. 7 Repetitive Peak Off-state Current

On-state Voltage

100

(VE)
80

40

00

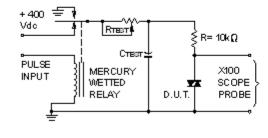
05

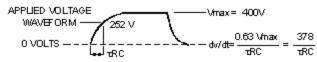
1.0

15

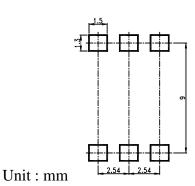
20

20


On-state voltage Vmi (V)


Fig. 8 On-state Current vis.

Static dv/dt Test Circuit


100

80

RECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

Contact Information

® is registered trademarks of TANI Corporation.

Product Specification Statement

The product specification aims to provide users with a reference regarding various product parameters, performance, and usage. It presents certain aspects of the product's performance in graphical form and is intended solely for users to select product and make product comparisons, enabling users to better understand and evaluate the characteristics and advantages of the product. It does not constitute any commitment, warranty, or guarantee.

The product parameters described in the product specification are numerical values, characteristics, and functions obtained through actual testing or theoretical calculations of the product in an independent or ideal state. Due to the complexity of product applications and variations in test conditions and equipment, there may be slight fluctuations in parameter test values. TANI shall not guarantee that the actual performance of the product when installed in the customer's system or equipment will be entirely consistent with the product specification, especially concerning dynamic parameters. It is recommended that users consult with professionals for product selection and system design. Users should also thoroughly validate and assess whether the actual parameters and performance when installed in their respective systems or equipment meet their requirements or expectations. Additionally, users should exercise caution in verifying product compatibility issues, and TANI assumes no responsibility for the application of the product. TANI strives to provide accurate and up -to- date information to the best of our ability. However, due to technical, human, or other reasons, TANI cannot guarantee that the information provided in the product specification is entirely accurate and error-free. TANI shall not be held responsible for any losses or damages resulting from the use or reliance on any information in these product specifications.

TANI reserves the right to revise or update the product specification and the products at any time without prior notice, and the user's continued use of the product specification is considered an acceptance of these revisions and updates. Prior to purchasing and using the product, users should verify the above information with TANI to ensure that the product specification is the most current, effective, and complete. If users are particularly concerned about product parameters, please consult TANI in detail or request relevant product test reports. Any data not explicitly mentioned in the product specification shall be subject to separate agreement.

Users are advised to pay attention to the parameter limit values specified in the product specification and maintain a certain margin in design or application to ensure that the product does not exceed the parameter limit values defined in the product specification. This precaution should be taken to avoid exceeding one or more of the limit values, which may result in permanent irreversible damage to the product, ultimately affecting the quality and reliability of the system or equipment.

The design of the product is intended to meet civilian needs and is not guaranteed for use in harsh environments or precision equipment. It is not recommended for use in systems or equipment such as medical devices, aircraft, nuclear power, and similar systems, where failures in these systems or equipment could reasonably be expected to result in personal injury. TANI shall assume no responsibility for any consequences resulting from such usage.

Users should also comply with relevant laws, regulations, policies, and standards when using the product specification. Users are responsible for the risks and liabilities arising from the use of the product specification and must ensure that it is not used for illegal purposes. Additionally, users should respect the intellectual property rights related to the product specification and refrain from infringing upon any third- party legal rights. TANI shall assume no responsibility for any disputes or controv ersies arising from the above-mentioned issues in any form.