

ESDBXXXADB

Features

- Bi-directional ESD Protection of one line
- Working voltage: 3.3V, 4.5V, 5.0V, 7.0V, 12V, 15V, 18V, 24V
- Epoxy Meets UL 94 V-0 Flammability Rating
- Low leakage current
- Transient protection for each line according to IEC61000-4-2 (ESD): ± 30 KV (contact discharge)

DFN 1006-2L Pin1 Pin2

Power Transient Voltage Suppressor

Bottom View

Bi-directional

Cathode

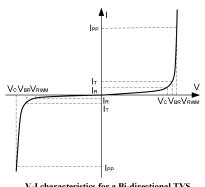
Mechanical Characteristics

- Case: DFN 1006-2L package
- Packaging: Tape and Reel per EIA 481
- RoHS Compliant
- Markig Code

Applications

- MDDI Ports
- Cellular Handsets and Display Ports

Cathode -


Computer and Peripherals

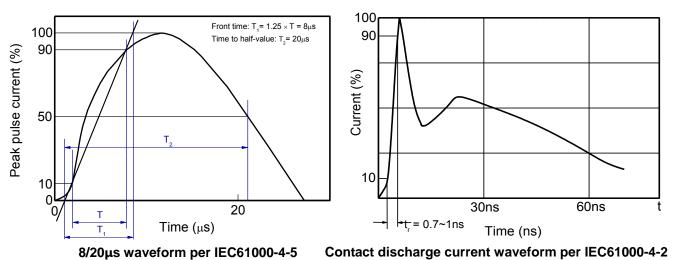
Absolute Maximum Rating(Ratings at 25 °C ambient temperature unless otherwise specified.)

Parameter		Symbols	Value	Unit	
IEC61000 4.2 (ESD)	Air Model	V	±30	KV	
IEC61000-4-2 (ESD)	Contact Model	V _{ESD}	±30		
Junction Temperature Range		T_{J}	125	°C	
Operating Temperature Range		T_{OPR}	-40 to +125	°C	
Storage Temperature Range		T_{STG}	-55 to +150	°C	

Electrical Parameter (Tc=25°C Unless otherwise specified)

Symbol	Parameter			
V_{C}	Clamping Voltage @ IPP			
I_{PP}	Peak Pulse Current			
V_{BR}	Breakdown Voltage @ I _T			
I_T	Test Current			
I_R	Reverse Leakage Current @ V _{RWM}			
V _{RWM}	Reverse Standoff Voltage			
$V_{\rm F}$	Forward Voltage@I _F			

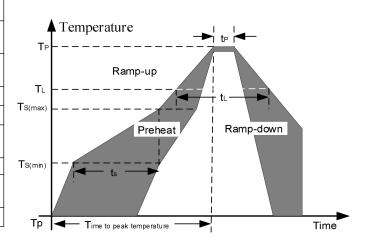
V-I characteristics for a Bi-directional TVS


Electrical Characteristics

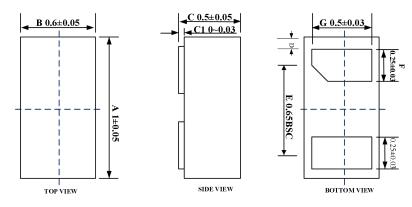
ESDB3				1	1
Parameter	Symbols	Min.	Тур.	Max.	Uni
Reverse stand-off voltage	V_{RWM}			3.3	V
Reverse Leakage Current at $V_{RWM} = \pm 3.3V$	I_R			0.1	μA
Breakdown Voltage at $I_T = 1 \text{ mA}$	$V_{R(BR)}$	5.0		6.5	V
Peak Pulse Power Dissipation tp = 8/20μs	P_{PP}			48	W
Peak Pulse Current tp = $8/20\mu$ s	I_{PP}			6	A
Clamping Voltage	$V_{\rm C}$			7	V
at IPP = 1 A, tp= $8/20\mu s$ at I _{PP} = 6 A, tp= $8/20\mu s$				10	
Junction Capacitance at $V_R = 0 \text{ V}$, $f = 1 M_{HZ}$	C _J		12	16	pF
ESDB4		3.4.	TC	M	TT. •
Parameter	Symbols	Min.	Тур.	Max.	Uni
Reverse stand-off voltage	V _{RWM}			4.5	V
Reverse Leakage Current at V _{RWM} =±4.5V	I_R			0.1	μA
Breakdown Voltage at $I_T = 1 \text{ mA}$	V _{R(BR)}	4.8		6.0	V
Peak Pulse Power Dissipation tp = $8/20\mu$ s	P _{PP}				W
Peak Pulse Current tp = 8/20μs	I_{PP}				A
Clampimg Voltage at IPP = 1 A, tp= $8/20\mu$ s at IPP = 9A, tp= $8/20\mu$ s	$V_{\rm C}$				V
Junction Capacitance at $V_R = 0 V$, $f = 1 M_{HZ}$	C_{J}				pF
ESDB5	SVADB				
Parameter	Symbols	Min.	Typ.	Max.	Uni
Reverse stand-off voltage	V _{RWM}			5.0	V
Reverse Leakage Current at V _{RWM} =±5.0V	I_R			0.1	μΑ
Breakdown Voltage at I _T = 1 mA	V _{R(BR)}	5.8		8	V
Peak Pulse Power Dissipation tp = 8/20μs	P _{PP}			100	W
Peak Pulse Current tp = 8/20μs	I_{PP}			8	A
Clampimg Voltage at IPP =1 A, tp=8/20μs at I _{PP} =8 A, tp=8/20μs	$V_{\rm C}$			9.5 15	V
Junction Capacitance at $V_R = 0 \text{ V}$, $f = 1 M_{HZ}$	CJ		12	15	рF
ESDB7	V0ADB				
Parameter	Symbols	Min.	Тур.	Max.	Uni
Reverse stand-off voltage	V_{RWM}			7	V
Reverse Leakage Current at V _{RWM} =±7.0V	I_R			0.2	μΑ
Breakdown Voltage at $I_T = 1 \text{ mA}$	V _{R(BR)}	7.6		9	V
Peak Pulse Power Dissipation tp = 8/20μs	P _{PP}			72	W
Peak Pulse Current tp = 8/20μs	I_{PP}			6	A
Clampimg Voltage			9	12	17
at IPP = 1 A, tp= $8/20\mu s$ at I _{PP} = 3.5 A, tp= $8/20\mu s$	$V_{\rm C}$		12	16	V
Junction Capacitance at $V_R = 0 \text{ V}$, $f = 1 M_{HZ}$	C _J		15	16	pF
ESDB1					
Parameter	Symbols	Min.	Тур.	Max.	Uni
Reverse stand-off voltage	V_{RWM}			12	V
Reverse Leakage Current at $V_{RWM} = \pm 12V$	I_R			0.1	μΑ
Breakdown Voltage at $I_T = 1 \text{ mA}$	$V_{R(BR)}$	13.3		16	V
Peak Pulse Power Dissipation tp = $8/20\mu$ s	P _{PP}			84	W
D 1 D 1 C 11 0/20	I_{PP}			3.5	A
Peak Pulse Current tp = $8/20\mu$ s	- 11				
Peak Pulse Current tp = $8/20\mu$ s Clamping Voltage at IPP =1 A, tp= $8/20\mu$ s at I _{PP} =3.5A, tp= $8/20\mu$ s	V _C			13 24	V

ESDB15VADB								
Parameter	Symbols	Min.	Typ.	Max.	Unit			
Reverse stand-off voltage	V _{RWM}			15	V			
Reverse Leakage Current at V _{RWM} =±15V	I_R			0.1	μΑ			
Breakdown Voltage at I _T = 1 mA	V _{R(BR)}	16		19	V			
Peak Pulse Power Dissipation tp = 8/20μs	P _{PP}			280	W			
Peak Pulse Current tp = 8/20μs	I _{PP}			8	A			
Clampimg Voltage at IPP =1 A, tp=8/20μs at I _{PP} =8 A, tp=8/20μs	V _C			22 35	V			
Junction Capacitance at $V_R = 0 \text{ V}$, $f = 1 \text{ M}_{HZ}$	CJ			45	pF			
-	ESDB18VADB							
Parameter	Symbols	Min.	Typ.	Max.	Unit			
Reverse stand-off voltage	V _{RWM}			18	V			
Reverse Leakage Current at V _{RWM} =±18V	I_R			0.1	μΑ			
Breakdown Voltage at I _T = 1 mA	V _{R(BR)}	20		24	V			
Peak Pulse Power Dissipation tp = 8/20μs	P _{PP}			210	W			
Peak Pulse Current tp = 8/20μs	I _{PP}			10	A			
Clampimg Voltage at IPP =1 A, tp=8/20μs at I _{PP} =6 A, tp=8/20μs	Vc			25 35	V			
Junction Capacitance at $V_R = 0 \text{ V}$, $f = 1 \text{M}_{HZ}$	CJ			40	pF			
ESDB24	VADB							
Parameter	Symbols	Min.	Typ.	Max.	Unit			
Reverse stand-off voltage	V_{RWM}			24	V			
Reverse Leakage Current at V _{RWM} =±24V	I_R			0.1	μΑ			
Breakdown Voltage at I _T = 1 mA	V _{R(BR)}	26.5		30	V			
Peak Pulse Power Dissipation tp = 8/20μs	P _{PP}			55	W			
Peak Pulse Current tp = 8/20μs	I _{PP}			5	A			
Clampimg Voltage at IPP =1 A, tp=8/20μs at I _{PP} =5 A, tp=8/20μs	V _C			38 51	V			
Junction Capacitance at $V_R = 0 \text{ V}$, $f = 1 M_{HZ}$	CJ			32	pF			

Typical Characteristics Curves


are required, additional communication and provision are required.

Note: The above typical parameters or typical characteristics are only indicative and do not make specific guarantees. If detailed values


Soldering Parameters

Re	eflow Condition	Pb – Free assembly	
	Temperature Min (Ts(min))	150°C	
Pre Heat	Temperature Max (Ts(max))	200°C	
	Time (min to max) (ts)	60 - 190 secs	
Average	ramp up rate (Liquidus	5°C/second max	
Te	mp) (T _L) to peak		
TS(max) to TL——Ramp-up Rate		5°C/second max	
Reflow	Temperature (T _L) (Liquidus)	217°C	
	Temperature (t _L)	60 – 150 seconds	
Peak	Temperature (T _P)	260+0/-5 °C	
Time within actual peak Temperature (tp)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
	Do not exceed	280°C	

Outline Drawing – DFNx0.6-2L-0011

Dimensions in mm

DIM	INCHES		M	NOTE	
	MIN	MAX	MIN	MAX	NOTE
Α	0.037	0.041	0.95	1.05	
В	0.022	0.026	0.55	0.65	
C	0.016	0.022	0.40	0.50	
C1		0.004		0.05	
D	0.001	0.003	0.02	0.08	
E	0.026		0.	65	TYP.
F	0.008	0.012	0.20	0.30	
G	0.018	0.022	0.45	0.55	

Package Information

Package Type	Description	Quantity (pcs)	Standard
DFNX0.6-2L-0011	Tape & Reel -7" tape	10000	EIA-481

Part Marking System(Top View)

Device	ESDB3V3ADB ESDB4V5AI		ESDB5V0ADB	ESDB7V0ADB	
DFN 1006-2L-0011	B33	B45	B5A	B7A	
Device	ESDB12VADB	ESDB15VADB	ESDB18VADB	ESDB24VADB	
DFN 1006-2L-0011	RA	SA	TA	WA	

Contact Information

TANI website: http://www.tanisemi.com Email:tani@tanisemi.com

For additional information, please contact your local Sales Representative.

® is registered trademarks of TANI Corporation.

Product Specification Statement

The product specification aims to provide users with a reference regarding various product parameters, performance, and usage. It presents certain aspects of the product's performance in graphical form and is intended solely for users to select product and make product comparisons, enabling users to better understand and evaluate the characteristics and advantages of the product. It does not constitute any commitment, warranty, or guarantee.

The product parameters described in the product specification are numerical values, characteristics, and functions obtained through actual testing or theoretical calculations of the product in an independent or ideal state. Due to the complexity of product applications and variations in test conditions and equipment, there may be slight fluctuations in parameter test values. TANI shall not guarantee that the actual performance of the product when installed in the customer's system or equipment will be entirely consistent with the product specification, especially concerning dynamic parameters. It is recommended that users consult with professionals for product selection and system design. Users should also thoroughly validate and assess whether the actual parameters and performance when installed in their respective systems or equipment meet their requirements or expectations. Additionally, users should exercise caution in verifying product compatibility issues, and TANI assumes no responsibility for the application of the product. TANI strives to provide accurate and up -to- date information to the best of our ability. However, due to technical, human, or other reasons, TANI cannot guarantee that the information provided in the product specification is entirely accurate and error-free. TANI shall not be held responsible for any losses or damages resulting from the use or reliance on any information in these product specifications.

TANI reserves the right to revise or update the product specification and the products at any time without prior notice, and the user's continued use of the product specification is considered an acceptance of these revisions and updates. Prior to purchasing and using the product, users should verify the above information with TANI to ensure that the product specification is the most current, effective, and complete. If users are particularly concerned about product parameters, please consult TANI in detail or request relevant product test reports. Any data not explicitly mentioned in the product specification shall be subject to separate agreement.

Users are advised to pay attention to the parameter limit values specified in the product specification and maintain a certain margin in design or application to ensure that the product does not exceed the parameter limit values defined in the product specification. This precaution should be taken to avoid exceeding one or more of the limit values, which may result in permanent irreversible damage to the product, ultimately affecting the quality and reliability of the system or equipment.

The design of the product is intended to meet civilian needs and is not guaranteed for use in harsh environments or precision equipment. It is not recommended for use in systems or equipment such as medical devices, aircraft, nuclear power, and similar systems, where failures in these systems or equipment could reasonably be expected to result in personal injury. TANI shall assume no responsibility for any consequences resulting from such usage.

Users should also comply with relevant laws, regulations, policies, and standards when using the product specification. Users are responsible for the risks and liabilities arising from the use of the product specification and must ensure that it is not used for illegal purposes. Additionally, users should respect the intellectual property rights related to the product specification and refrain from infringing upon any third- party legal rights. TANI shall assume no responsibility for any disputes or controv ersies arising from the above-mentioned issues in any form.